I like that video, and not just because it promotes the notion of entrepreneurial thinking (which will likely be a feature of a later post), but because it shows how easily we define our problems in education based on the way in which we pose the question. Namely, that the nature of trying to improve or tweak a system that was set up for yesterday’s outcomes is limiting the amount of progress we can make. Many wise folks are in the midst of educational reform of a larger nature – Joel Rose's A School of One in NYC, and Dennis Litsky’s Big Picture Schools are just two examples. While grander re-assessments such as these are the future, my goal for this blog is to remain in the more mundane world of the current reality – practical applications that have the potential to impact learning in the current school structure and aid the transition of larger reforms by showing what is possible.
FROM THEORY TO CLASSROOM: BRIDGING THE TECHNOLOGY GAP
Having just returned from the Lausanne Laptop Institute, a great 1:1 Conference at in Memphis, it’s easy to be jazzed about all technology can do to change education.
Like other educational conferences, I always leave with my mind spinning between theory and practice – between what I’ve just heard, and what my school (American International School of Budapest) does.
But I was also left with an uncomfortable feeling as well. Why does it sound so easy to change in theory and yet the applications struggle to be implemented and/or have done fairly little to alter the way in which students learn? I left with a nagging feeling that we still have a gap that does not seem to be addressed much.
Is it really true that “it isn’t about the technology” ? – that it’s about using that technology to teach students about sifting, searching, finding, evaluating, applying, summarizing (and every other higher order of Blooms Taxonomy that can be used). If it’s not about the technology, why is it that so many Web 2.0 technologies (with their wide open infrastructure and social networking opportunities) are not widespread and easily adopted within K-12 settings. And why haven't we integrated this new curricular reality more readily and thrown out the content to make room for the information literacy? I suspect it's because education is a massive institution, and we still have a lot of reluctance toward discarding some of these elements - many are still not sold on how to do this, what it looks like, or how different it all is.
What technologies currently exist that are easy to integrate? How closely do these technologies align with new research-based models of learning, instead of using technology for technology’s sake ? – promoting a more high-tech environment for the same type of learning.
We can’t address these questions until we get some grounding into current learning research, which thankfully is abundant. For the sake of providing some yardstick, we can share some brief nuggets regarding two areas: Brain-Based Learning and Project (or Challenge)-Based Learning. The summaries below are by no means meant to be exhaustive; they are simply meant to provide an overview so that we can attempt to link these areas of research together and have some framework to assess the current uses of technology in education. Interested folks are encouraged to read more about these topics at the links mentioned.
1) BRAIN BASED LEARNING (BBL)
Image via Wikipedia
There is a pleathora of research available for interested learners. I'm a fan of Eric Jensen. Eduscapes also puts together a nice summary and links to a few sites.Our goal is to simply share a few bullets related to the characteristics of activities that need to be present to tap into the research in brain-based learning. These would include:
(from Caine and Caine's 1994 research)
1. Relaxed alertness - a low threat, high challenge state of mind
2. Orchestrated immersion - an multiple, complex, authentic experience
3. Active processing - making meaning through experience processing
Susan Kovalik identified 9 elements of thematic instruction that are compatible with tapping into brain-based learning. These elements are:
Absence of Threat,
Meaningful Content,
Choices,
Movement to Enhance Learning,
Enriched Environment,
Adequate Time,
Collaboration,
Immediate Feedback, and
Mastery (at the application level)
2) CHALLENGE-BASED LEARNING / PROJECT BASED LEARNING
There are a host of other similar "learnings" out there - authentic, inquiry-based, etc. - that would be applicable here as well. To be succinct, I've only listed the two below.
Again, a wealth of resources are available. (And while they are similar, note that Challenge / Problem are not completely the same.) Here are the major characteristics that define these types of learning activities, as (currently) defined by that bastion of source citation, Wikipedia.
CHALLENGE BASED LEARNING (CBL)
1) Multiple points of entry and varied and multiple possible solutions
2) Authentic connection with multiple disciplines
3) Focus on the development of 21st century skills
4) Leverages 24/7 access to up to date technology tools and resources, allowing students to do the work.
5) Use of Web 2.0 tools for organizing, collaborating, and sharing
6) A focus on universal challenges with local solutions
7) Requirement that students do something rather than just learn about something
8) Documentation of the experience from challenge to solution.
PROBLEM BASED LEARNING (PBL)
1) is organized around an open-ended Driving Question or Challenge. These focus students’ work and deepen their learning by centering on significant issues, debates, questions and/or problems.
2) creates a need to know essential content and skills. Typical projects (and most instruction) begin by presenting students with knowledge and concepts and then, once learned, give them the opportunity to apply them. PBL begins with the vision of an end product or presentation which requires learning specific knowledge and concepts, thus creating a context and reason to learn and understand the information and concepts.
3) requires inquiry to learn and/or create something new. Not all learning has to be based on inquiry, but some should. And this inquiry should lead students to construct something new – an idea, an interpretation, a new way of displaying what they have learned.
4) requires critical thinking, problem solving, collaboration, and various forms of communication. Students need to do much more than remember information—they need to use higher-order thinking skills. They also have to learn to work as a team and contribute to a group effort. They must listen to others and make their own ideas clear when speaking, be able to read a variety of material, write or otherwise express themselves in various modes, and make effective presentations. These skills, competencies and habits of mind are often known as "21st Century Skills". For more info: http://www.bie.org/about/21st_century_skills
5) allows some degree of student voice and choice. Students learn to work independently and take responsibility when they are asked to make choices. The opportunity to make choices, and to express their learning in their own voice, also helps to increase students’ educational engagement.
6) incorporates feedback and revision. Students use peer critique to improve their work to create higher quality products.
7) results in a publicly presented product or performance. What you know is demonstrated by what you do, and what you do must be open to public scrutiny and critique.
In a general sense, the task before us is to analyze the degree to which our classroom activities support the characteristics of BBL and CBL/PBL. And more specifically, how can technology provide support to move in this direction. To what extent are we designing and utilizing technologies which support these models of learning?
In the next segment, we'll be exploring the two general uses of technology in education thus far, and the bridge that we need to connect the two.
No comments:
Post a Comment